Discussion of Ljungqvist and Smolyansky (2016) 'To Cut or Not to Cut? On the Impact of Corporate Taxes on Employment and Income' by

Owen Zidar Chicago Booth and NBER

NBER Conference on State Taxation of Business Income

May 2016

Interesting paper!

- Important Question: How do state corporate tax rate changes affect employment and income?
- ② Clever Idea: Compare impacts on state-border counties

Interesting Results:

- A 1 pp increase in $\tau_s^{\,c} \Rightarrow \sim$ 0.4 pp decline in employment and income
- A 1 pp decrease in $\tau_s^c \Rightarrow$ little impact, except in recessions

- **1** Local labor markets are integrated. Good not bad news!
- **②** Use diff-in-diff setup to identify GE effects in your setting
- **Show more results to make estimates more convincing**

- **1** Local labor markets are integrated. Good not bad news!
- **②** Use diff-in-diff setup to identify GE effects in your setting

Show more results to make estimates more convincing

- Pre-trends!
- Levels
- Separate treatment and control impacts
- Industry results: tradables vs non-tradables
- Robustness to policy changes (other taxes and base rules)

Figure: Commuting Across Counties

	p10	p25	p50	p75	p90	Max	Mean
Commuters from Residence	0.06	0.14	0.27	0.42	0.53	0.82	0.29
Commuters to Workplace	0.07	0.14	0.20	0.28	0.37	0.81	0.22

Source: Monte, Redding, Rossi-Hansberg (2016) " Commuting, Migration, and Local Employment Elasticities" $^{\rm 1}$

Owen Zidar Chicago Booth and NBER

¹The first row shows fraction of residents that work outside county. The second row shows fraction of workers who live outside county.

Q: So what do these results mean?

- Very nice set up. Same local labor market, but heterogeneous shocks
- Several interesting effects:
 - Treatment firms: direct + indirect (factor prices) effects
 - Control firms: indirect effects
- Implications
 - Treatment gives total effects
 - Control gives GE effects
 - Difference gives direct effects

Table 3 shows 40% \uparrow in effect size w/o FX \Rightarrow GE impacts!

			Dep. var.: (Change in log	employment		
	scaled by (1)	total county (2)	population (3)	unscaled (4)	scaled by population aged 20-70 (5)	excluding govt. employ- ment (6)	self employ- ment only (7)
Δ tax rate	-0.241*** 0.065	-0.336*** 0.060					
magnitude of tax increase			-0.282***	-0.289***	-0.288***	-0.289***	-0.183
			0.075	0.070	0.075	0.086	0.140
magnitude of tax cut			0.065	0.105	0.100	0.008	0.299
			0.128	0.129	0.126	0.146	0.349
Demographic controls	x	x	x	x	x	x	x
Group-year fixed effects	x		х	x	x	x	x
Year fixed effects		х					
χ^2 test: (2) > (1)?		2.43*					
F test: $ inc. > cut $?			2.03*				
Adjusted R ²	9.1%	9.6%	9.1%	15.5%	8.8%	10.0%	16.1%
Number of county-years	10,366	7,040	10,366	10,366	10,334	10,366	10,366

II. Implementing Diff-in-Diff directly would be useful

Implications

- Column 2: $[Y_1^{post} Y_1^{pre}] = -.336$ Column 1: $[Y_1^{post} Y_1^{pre}] [Y_0^{post} Y_0^{pre}] = -.241$
- Therefore, GE impacts are $[Y_0^{post} Y_0^{pre}]$ = -.095
- χ^2 -test + significance in both Col (1) & (2) suggests can reject zero GE effect already

Table 4 shows 40% \uparrow in effect size w/o FX \Rightarrow GE impacts!

	Dep. var.: Change in log income						
	(1)	(2)	(3)	excluding govt. (4)	including transfers (5)	by place of residence (6)	self employ- ment only (7)
A tax rate	-0.367***	-0 523***					
	0.072	0.092					
magnitude of tax increase	0.072	0.072	-0.420***	-0.422***	-0.307***	-0.247***	-0.165
			0.087	0.098	0.091	0.070	0.189
magnitude of tax cut			0.132	-0.014	0.088	0.146	0.518
			0.175	0.216	0.135	0.141	0.444
Demographic controls	x	x	x	х	x	x	x
Group-year fixed effects	x		х	x	x	x	x
Year fixed effects		x					
χ^2 test: (2) > (1)?		2.78**					
F test: $ inc. > cut $?			1.88*				
Adjusted R ²	20.9%	17.5%	20.9%	18.2%	19.1%	41.1%	37.3%
Number of county-years	10,366	7,040	10.366	10,366	10,366	10.366	10,366

Six suggestions:

- Use levels (versus first differences with trends)
- **2** Graphical evidence on parallel trends in pre-period
- Show both treatment and control event studies
- Concomitant policy changes (other taxes and tax base rules)
- Exploit industry-level analysis: tradables vs non-tradables
- Seport longer-term effects like 5 or 10 year long-differences

#2 & #3 pretends,T & C: Event Study of τ_s^c change

Estimate

$$Y_{st} = \alpha_s + \gamma_t + \sum_{k \in \{-4, -3, -2, 0, 1, 2, 3, 4, 5\}} \beta_k D_{st}^k + \beta \sum_{k < -4} D_{st}^k + \overline{\beta} \sum_{k > 5} D_{st}^k + \varepsilon_{st}$$
(1)

where

- D_{st}^k is an indicator for state *s* having changed the state tax rate *k* periods in the past
- α_s is a state fixed effect
- γ_t is a time fixed effect.
- The coefficients β_k provide the impact on the time path of mean outcomes relative to the period before the tax change (which has been normalized to zero).

#2 & #3 pretends, T & C: Event Study of τ_s^c decrease

#2 & #3 pretends, T & C: Event Study of τ_s^c increase

#2 & #3: E.S. of keep rate $(1 - \tau_s^c)$ change

- Paper includes some controls: ITC, R&D, bank tax, gov spending, etc
- \bullet Could include major state tax rates: $\tau^{\it inc}$, $\tau^{\it sales}$, apportionment
- Could also include tax base changes

#4 Other tax policy and corporate tax base changes

#4 Other tax policy and corporate tax base changes

- Instead of using them as a robustness check, authors can use industry results to look at spillovers
- For example, **tradables vs non-tradables** could be informative and very interesting rather than just robustness check

- Great paper that shows clean evidence of impacts
- Encourage you to embrace Diff-in-Diff and GE effects
- Six additional suggestions:
 - Use levels (versus first differences with trends)
 - ② Graphical evidence on parallel trends in pre-period
 - 3 Show both treatment and control event studies
 - Oncomitant policy changes (other taxes and tax base rules)
 - Sector 2 Sec
 - **1** Report longer-term effects like 5 or 10 year long-differences